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Abstract: Articular cartilage, the load-bearing tissue in diarthro-
dial joints, is continually subjected to mechanical stimulation. Car-
tilage tissue consists of an extracellular matrix (ECM) and is
sparsely populated by chondrocytes. Although chondrocytes com-
prise less than 10% of cartilage, these cells sense and respond to
the mechanical stimuli. However, the effects of mechanical signals
at the cellular level are still not fully defined. Moreover, the
mechanisms by which chondrocytes respond to mechanical signals
are not fully understood. The purpose of this study was to test the
hypothesis that mechanical stimulation in the form of cyclic strain
modulates proliferative capacity and integrin expression of chon-
drocytes from osteoarthritic knee joints. We also examined the
effect of mechanical stimulation on integrin expression since it has
been proposed to mediate the transduction of mechanical signals.
Chondrocytes were isolated from human knees during total knee
arthroplasty and were propagated in microcarrier spinner culture
for 2 weeks. Cells were subsequently harvested and then plated
onto flexible-bottom wells. They were then subjected to cyclic
strain for 24 hr using a computer-controlled vacuum device, while
replicate samples were maintained under static conditions. Prolif-
erative capacity was determined by radiolabeled thymidine uptake.
Phenotype and integrin expression were analyzed by reverse-
transcriptase polymerase chain reaction (RT-PCR). Cyclic strain
increased proliferative capacity by about 30% of controls. RT-PCR
analysis of mRNA expression showed that cyclic strain enhanced
expression of collagen type II and aggrecan whereas Col I expres-
sion was unaltered. Parallel to enhancement of the chondrocytic
phenotype, the expression of integrin �2 subunit was also en-
hanced. In contrast, there was a slight but noticeable change in �5

integrin expression and no change in the �1 integrin. These results
demonstrate that mechanical stimulation by cyclic strain can di-
rectly alter proliferative capacity, phenotype expression, and inte-
grin �2 subunit expression by human chondrocytes. Our observa-
tions agree with previous findings for the behavior of chondrocytes
subjected to a mechanical stress and also support the theory that
integrins may participate in mediating the response of chondro-
cytes to their mechanical environment.

Introduction

Articular cartilage, the load-bearing surface in diarthro-
dial joints, is subjected to repetitive mechanical stimuli. The

bulk of this tissue consists of extracellular matrix (ECM)
made up primarily of a collagen type II framework filled
with the hydrophilic proteoglycans. In articular cartilage,
collagen type II and proteoglycans that form large molecu-
lar weight aggregates (aggrecans) enable the tissue to per-
form its biomechanical function. Comprising less than 5%
of the cartilaginous tissue volume, chondrocytes sense and
respond to their mechanical environment in the joint. The
ability of chondrocytes to detect and react to mechanical
stimuli is reflected by changes in their metabolic activity
and in their synthesis–degradation of ECM macromolecules
that constitute cartilage. Mechanical forces such as
strain, compression, or shear have been shown to modu-
late the ability of chondrocytes to proliferate and produce
extracellular matrix components (ECM) characteristic of
hyaline cartilage. Proteoglycan synthesis can be stimulated
via moderate exercise as shown by in vivo studies [28],
while immobilization of a joint has the opposite effect
[46,4]. Biosynthetic response of chondrocytes to mechani-
cal stress has been examined with several in vitro studies
(reviewed in [56]). Several experiments have shown that
cartilage explants, when subjected to mechanical compres-
sion or hydrostatic pressure, or in which cultured chondro-
cytes were subjected to tensile loading, have shown that
while static loading inhibits synthesis of matrix compo-
nents, cyclic loading at certain frequencies can stimulate
synthesis [13,22,26,28,32,36,45,47,49,55]. Several me-
chanical and physicochemical mechanisms have been hy-
pothesized to be responsible for mediating this biosynthetic
response [22,49,52,56]. Alterations in chondrocyte syn-
thetic activity correlate with local tissue strains and cell
deformation [7,55]. Earlier studies also demonstrated simi-
lar changes in cellular metabolism after exposure of chon-
drocytes seeded in agarose gels to static and dynamic com-
pression [6,33]. Perturbation of the extracellular matrix mi-
lieu provided by the agarose gel appeared to have an impact
on chondrocyte response to mechanical stimulation. These
studies seem to indicate that cell–matrix interaction is criti-
cal in mediating the response of chondrocytes to mechanical
stimuli.

Previous studies suggest that the integrins, a family of
cell surface proteins, are involved in mediating communi-
cation between the chondrocytes and the extracellular ma-
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trix [31,37,51,58]. Integrins are heterodimeric, non-covalent
complexes of � and � subunits which act as transmembrane
receptors for specific components of the extracellular ma-
trix, thus linking the extracellular matrix with the cyto-
skeleton and, ultimately, the nucleus [12,39,53,57]. These
molecules have been shown to mediate cell–matrix interac-
tions in a variety of tissues, including cartilage, retina,
vascular endothelium, and bone [25,53]. In adult human
articular cartilage, the predominantly expressed integrins
contain the �1 subunit [38,51,58]. In contrast, integrin �3

and �5 subunits are less detectable [37,58]. The � subunits
dimerize with a variety of � subunits, including �1, �5, �V,
and �10, to form receptors that bind matrix proteins
[9,37,44,51,58].

Previous investigators have explored the role of integrins
in chondrocyte function. In fetal cartilage, cell–matrix in-
teractions mediated by �1 integrins have been proposed to
regulate chondrocyte differentiation [15,50]. In osteoar-
thritic cartilage, �1 expression may be associated with the
severity of the lesion. The relative distribution of � subunits
is altered in osteoarthritic cartilage, while the level of �1

expression appears to be inversely correlated with the ana-
tomic extent of the pathologic foci [30,31,38,44]. The ob-
servation that integrins bind to matrix proteins has also been
thought mediate the production of degradative enzymes in
both osteoarthritis and rheumatoid arthritis [2]. However,
limited information has been available in defining the effect
of mechanical strain on integrin expression by chondro-
cytes. Holmvall and colleagues reported variable effects of
mechanical strain on �1 expression in adult bovine chon-
drocytes. They proposed that exposure to cyclic strain in-
duces redistribution of integrins within the cell rather than
de novo integrin synthesis.

In an earlier report, we described that human chondro-
cytes when subjected to cyclic strain did not shown alter-
ation in �1 expression [5] while expression of phenotype
markers collagen type II and aggrecan were enhanced.
These chondrocytes were retrieved from microcarrier sus-
pension cultures, which facilitated retention of their chon-
drocytic phenotype [19]. Chondrocytes retrieved from
monolayer cultures which favored dedifferentiation into fi-
broblastoid cells that produce collagen type I and low mo-
lecular weight proteoglycans also did not show increased �1

expression. However, these “fibroblastoid” chondrocytes
showed decreased collagen type II and aggrecan expression
with increased expression of collagen type I. Our observa-
tions appear to be in agreement with that of earlier reports
by Holmvall [24] where cyclic strain did not elicit consis-
tent alteration in �1 expression. In the present paper, we
hypothesize that other integrin subunits such as the �2 sub-
unit may be more responsive to mechanical stimuli and may
parallel the expression of cartilage phenotypic markers. The
�2 integrin subunit functions as receptor for collagen and is
involved in collagen reorganization. The purpose of the pre-
sent study was to investigate the effect of cyclic strain on
the integrin, phenotypic expression and proliferative capac-
ity of human articular chondrocytes harvested from micro-
carrier spinner cultures.

Methods

Preparation and propagation of articular chondrocytes
Non-fibrillated articular cartilage was obtained from the

knees of three patients (ages 55–76) undergoing total knee
arthroplasty for osteoarthritis. The protocol for the use of
cartilage pieces in the study has been reviewed and ap-
proved by the Johns Hopkins Investigational Review Board.
Chondrocytes were isolated by digestion of the tissue with
collagenase A (Boehringer Mannheim, Mannheim, Ger-
many) for 18–24 hr at 37°C. The cells were filtered through
a wire mesh screen, washed twice with Hanks’ balanced salt
solution (HBSS, Gibco, Grand Island, NY), and then di-
rectly on monolayer cultures in enriched Dulbecco’s mini-
mal essential medium supplemented with 20% fetal calf
serum until confluence. The cells were harvested by tryp-
sinization, counted, and assayed for viability. Chondrocytes
were subsequently seeded onto collagen microcarrier beads
(Cellagen� 100–400 �m derived from bovine corium; ICN,
Cleveland, OH) at a density of 4 × 103 chondrocytes/cm2 in
a siliconized spinner flask. During the first 4 hr, the mixture
was intermittently stirred for 2 min every 30 min at 25–30
rpm. The cell–microcarrier suspension was subsequently
stirred at 45 rpm for another 4 hr. The speed was gradually
increased to 60 rpm and then maintained at 60 rpm for 2
weeks. The final volume of the suspension culture was 3 mL
per 1.0 × 106 chondrocytes. To replenish the spinner cul-
tures, the microcarriers were sedimented for 5 min and ap-
proximately 50% of the spent medium was replaced every 3
days. Spinner cultures were incubated at 37°C, 5% CO2

(refer to Fig. 1 for protocol).

Mechanical stimulation via cyclic strain
After 14 days in culture, chondrocytes were harvested

from the microcarriers by collagenase digestion, or from
monolayer culture by digestion with 0.25% trypsin, and
plated onto type I collagen-coated flexible-bottom wells
(Flex I plates, FlexCell International, McKeesport, PA) at a
density of 2 × 105 cells/1 mL medium per well. The wells
were incubated at 37°C, 5% CO2. After the cells had been
allowed to adhere for 48 hr, the wells were subjected to
cyclic strain at 0.5 Hz (1 sec of deformation alternating with
1 sec of relaxation) for 24 hr, using a computer-controlled
vacuum strain apparatus (Flexercell Strain Unit, FlexCell
International) with a vacuum pressure of −20 kPa. Replicate
samples were maintained under static conditions, with no
applied cyclic strain (Fig. 1).

Approximately 3.0 · 106 articular chondrocytes were
frozen at −70°C and used for semiquantitative reverse-
transcriptase polymerase chain reaction (RT-PCR) analy-
sis to verify the presence of integrins and specific chon-
drocytic phenotype markers. The remaining chondrocytes
were used for phenotypic analysis using immunoperoxi-
dase as well as thymidine uptake to assess proliferative
capacity.

Determination of cell proliferative capacity
After 18 hr, radiolabeled thymidine was added to flexed

and static samples (1 �C/mL of media). The samples were
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then flexed, and the control samples were left static for
another 6 hr. The supernatant medium was collected, and
the wells were washed twice with sodium chloride. At-
tached cells were retrieved by scraping of the wells. Assess-
ment of the proliferative capacity was carried out by the
determination of trichloroacetic (TCA) precipitable 3H-
thymidine radioactivity in a Beckman multi-purpose scin-
tillation counter (Model LS 6500). The results were pre-
sented as mean radioactivity expressed as counts per
minute/105 cells.

RNA extraction and analysis by RT-PCR
Total RNA was isolated by the TRIzol� (Life Technolo-

gies, Rockville, MD) reagent method. A total cDNA library
was synthesized using the Advantage RT-PCR Kit (Clon-
tech Laboratories, Palo Alto, CA) and Oligo (dT18) primer.
The resulting RT product was expanded using the SuperTaq
Plus (Ambion, Austin, TX) PCR kit and specific primers for
collagen type II, type I, aggrecan, �1 integrin, and the
housekeeping gene ribosomal RNA S14 subunit.

Two microliters of cDNA template was used in each PCR
reaction. Primers for collagen type II were used for ampli-
fication (sense, 5� CAC CTT GGA CGC CAT GAA GGT
3�; antisense, 5� GTG AAC CTG CTA TTG CCC TCT 3�)
collagen type I (sense, 5� GAC GGG AGT TTC TCC TCG
GGG TC 3�; antisense, 5� GAG TCT CCG GAT CAT CCA
CGT C 3�), aggrecan (sense, 5� GGG TCA ACA GTG CCT

ATC AG 3�; antisense, 5� GGG TGT AGC GTG TAG AGA
TG 3�), �1 integrin (sense, 5� GTT ACA CGG CTG CTG
GTG TT 3�; antisense, 5� CTA CTG CTG ACT TAG GGA
TAC 3�), and S14 (sense, 5� GGC AGA CCG AGA TGA
ATC CTC A 3�; antisense, 5� CAG GTC CAG GGG GTC
TTG GTC C 3�). PCR reactions for collagen type II, colla-
gen type I, aggrecan, and S14 were conducted in a Perkin-
Elmer thermal cycler. After initial treatment (75°C, 5 min;
and 94°C, 1 min), 30 of the following cycles were per-
formed: denaturation (94°C, 5 min), annealing (65°C, 15
sec), and extension (68°C, 3 min). �1 integrin was processed
with an initial treatment (95°C, 3 min) followed by 35
cycles of denaturation (95°C, 1 min), annealing (60°C, 1
min), extension (72°C, 1 min), and an end step at 72°C for
10 min. The PCR products were analyzed by agarose gel
electrophoresis, and densitometry was performed using the
UN-SCAN-IT gel automated digitizing system (Silk Scien-
tific Corporation).

Phenotypic analysis using
immunoperoxidase technique

After the chondrocytes were incubated in Flex plates un-
der static or dynamic condition, plates were washed free
of media, fixed with 2% paraformaldehyde, and finally
air-dried. To visualize the morphology of the chondro-
cytes seeded on the flexible membrane, pie pieces were
cut and chondrocytes on the membrane were next immuno-

Fig. 1. Schematic illustration of experimental protocol used in the present study. Chondrocytes were extracted from human knee cartilage
and seeded into microcarrier spinner culture and monolayer culture. After 2 weeks in culture, cells were plated onto flexible-bottom silicone
rubber wells and allowed to adhere for 48 hr. The wells were then mechanically flexed for 24 h; replicate samples were maintained under
static conditions.
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stained with monospecific antibodies for collagen types I
and II (Fisher Scientific, Pittsburgh, PA) as well as chon-
droitin sulfate (ICN Biomedicals). Staining was visualized
using the immunoperoxidase technique with diaminobenzi-
dine as substrate, which produced a brownish color (Vector
Laboratories Immunoassay Kit Brochure, Burlingame, CA).
Cell preparations were counterstained with 0.5% toluidine
blue. Human osteoblasts at passage 1 served as the posi-
tive immunostaining control for collagen type I. Human
chondrocytes at passage 1 served as the positive immuno-
staining control for collagen type II. Human lymphocytes
comprised the negative immunostaining controls for colla-
gen types I and II. The specificity of the immunoperoxidase
staining was verified by omitting the primary antibody.
No staining occurred when the primary antibody was omit-
ted.

Statistical analysis
Paired t-test was used to determine the significance (P <

0.05) between samples using STATA software (SAS Insti-
tute, Cary, NC).

Results

Effect of cyclic strain on proliferative capacity
Figure 2 illustrates the average of proliferative capacities

of the three chondrocyte lines studied. The mean CPM for
the static cases was approximately 3,000 with a standard
deviation of about 1,500. The flexed samples had a mean
CPM of around 7,000 CPM with a standard deviation of
3,600. Our results indicate a trend toward an increase in
proliferative capacity; however, the statistical analysis
shows that there was no significant increase in proliferative
capacity between the flexed and static samples (P > 0.05).

Effect of cyclic strain on phenotype expression
Agarose gel electrophoresis following RT-PCR expan-

sion revealed distinct bands corresponding to mRNA mes-
sage for collagen types I and II, aggrecan, �2, �5, and �1

subunits, and the “housekeeping” gene S14 (Fig. 3). The
S14 bands appeared equal in intensity for both static and
mechanically flexed cells, confirming that equal volumes of
DNA had been loaded under each condition. Flexed samples

Fig. 2. Histograms of radiolabeled thymidine uptake was determined from three different patients. In each case, cells were seeded onto and
spinner cultures. Following 24 hr of mechanical flexing, cells were labeled with 3H-thymidine and TCA precipitable counts were determined
by enumeration with a Beckman scintillation counter.
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showed an up-regulation of collagen type II as well as the
�2 subunit compared to the static samples as indicated by
the more intense bands for the flexed samples. The �5 sub-
unit as well as aggrecan showed a slight yet noticeable

increase between the flexed and static samples as well. Both
sample types showed low intensity for collagen type I, as
expected for chondrocytes. An intense band corresponding
to �1 message was seen, with no apparent difference be-
tween flexed and static conditions.

Morphological and immunostaining patterns
Chondrocytes obtained from microcarrier suspension cul-

ture adhered readily onto the flexible surface of membranes.
Upon incubation overnight under static conditions, chon-
drocytes appeared randomly distributed on the surface of
the membrane (Fig. 4A). Some chondrocytes appeared stel-
late and rounded, whereas other most appeared to have
spread out as seen at higher magnification (Fig. 4B). Chon-
drocytes in static culture showed positive staining for col-
lagen type II, as shown by brown color in the cytoplasm,
while the nuclei are counterstained with toluidine blue (Fig.
4A), which is more easily appreciated at higher magnifica-
tion (Fig. 4B). Cyclic strain induced alignment of chondro-
cytes perpendicular to the strain vector (Fig. 4C). Cells ap-
peared to be elongated and to have localized at the area of
maximum strain, i.e., toward the edge of the plate. Flexed
cells produced a darker shade of brown, indicating that there
was an increase in protein expression for collagen type II
(Fig. 4C,D). The immunostaining pattern for collagen type
II was disseminated throughout the cytoplasm. There was
no increase in the immunostaining pattern for collagen type
I in chondrocytes kept under static conditions compared to
flexed cells. There was also no noticeable difference in the
expression of chondroitin sulfate between flexed and static
samples.

Fig. 3. Photograph (under ultraviolet light) of ethidium bromide-
containing agarose gel following electrophoresis of RT-PCR prod-
ucts. Cells were propagated in microcarrier spinner cultures. Total
RNA was extracted and RT-PCR performed using primers specific
for type I collagen (Col I), type II collagen (Col 2), aggrecan
(Agg), the “housekeeping” gene S14, and ��1 integrin subunit.
Each pair of lanes represents the results from cells subjected to
mechanical flexing (F) and maintained under static conditions (S).

Fig. 4. Representative micrographs of immunostained chondrocytes subjected to static or to cyclic strain using the Flexercell apparatus.
Chondrocytes were immunostained with monospecific antibody to collagen type II and counterstained with toluidine blue as described above
in Methods. (A) Chondrocytes kept in static condition (original magnification 100×); (B) chondrocytes kept in static condition (original
magnification 400×); (C) chondrocytes subjected to flex-cyclic strain (original magnification 100×); (D) chondrocytes subjected to flex-
cyclic strain (original magnification 400×).
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Discussion

We have discovered that cyclic strain up-regulated ex-
pression of chondrocyte marker collagen type II that is in
parallel with enhancement of �2 integrin expression. This
upregulation of collagen type II and �2 integrin expression
seems to be more consistent and profound than promotion
of proliferative capacity. This observation suggests that the
�2 integrin subunit may play a role in the regulation of
chondrocyte function and proliferation by mechanical
forces. We obtained chondrocytes from elderly patients
with osteoarthritis, as these are the only consistent source of
such tissue. Care was also taken to retrieve “healthy appear-
ing” tissue with no gross evidence of fibrillation. Neverthe-
less, it is possible that cartilage samples may contain chon-
drocytes already undergoing degenerative changes due to
osteoarthritis or aging. It has been noted that �1 expression
correlates inversely with the degree of histological damage
in osteoarthritic cartilage [31]. Studies also reported that
integrin expression may be altered in osteoarthritic cartilage
compared to normal tissue and may not reflect normal tissue
from younger individuals.

It is well known that articular cartilage is subjected to a
combination of mechanical compression and fluid shear
during in vivo loading. Our in vitro model used chondro-
cytes that were plated onto flexible wells, which were sub-
jected to cyclic deformation. In this model, there is a com-
bination of cyclic strain due to chondrocytes adherence to
the wells and fluid shear due to relative motion between the
cells and the overlying medium. We used the vacuum strain
unit used for the present study (Flexercell, FlexCell Inter-
national) that has been extensively utilized to evaluate the
effect of cyclic strain a variety of cell types [23,24,53]. The
conditions used, such as amplitude and frequency of strain,
were comparable to those reported and were selected within
physiologic levels. Other systems reported to study the re-
sponse of chondrocytes to cyclic strain noted that increased
proteoglycan synthesis [15,55]. In spite of its limitations
that do not allow evaluation of complex loading pattern
experienced by intact cartilage in vivo, the cyclic strain
model is a useful tool for analyze the ability of chondrocytes
to sense and react to their mechanical environment. The
strain profile applied by the FlexCell unit is known to be
non-uniform over the surface of the flexible wells. The
maximum strain occurs near the constrained outer edge
while the lowest degree of strain occurs near the center [20].
Since our samples for analyses constituted a pool of cells
subjected to a range of strain amplitudes, the observed re-
sults represent an average and may thus be less dramatic
than if cells in areas of maximum strain were used. That a
change in expression can be detected in response to a strain
of only 1% demonstrates the high sensitivity of the chon-
drocyte response.

We have demonstrated that mechanical stimulation in the
form of cyclic strain modulates �2 integrin expression as
well as collagen type II at the messenger level. However,
the connection between this response and other intracellular
processes, as well as other pathways by which chondrocytes

sense and react to mechanical stimuli still need to be de-
fined. Insight into the mechanisms by which chondrocytes
sense and react to mechanical stimuli may contribute to an
understanding of the pathophysiology of disorders in the
joint such as osteoarthritis.
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