
    
                     

University of Pennsylvania Orthopaedic Journal Volume 19

Special Topics

Orthoepidemiology 101: The Basics of the Art of Outcomes 
Research in Orthopaedic Surgery

Keith D. Baldwin MD, MSPT, MPH; Rachel L. Slotcavage*, MD;
G. Russell Huffman MD, MPH

*The research fellowship of Dr. Slotcavage was funded by Stryker Orthopaedics.

Introduction

Epidemiology is defined as “the branch of medicine 
that deals with the study of the causes, distribution, 
and control of disease in populations.”1  The 
outcomes research branch of epidemiology is 
especially important in orthopaedic surgery, as it 
pertains to the outcomes of treatment of traumatic 
and atraumatic conditions for which the natural 
history is often poorly understood.2  Performing 
outcomes research is as much an art as it is a science.  
In spite of this, there is an orderly fashion by which 
outcomes research should be planned, performed, and 
disseminated.  This article describes such an
approach.

Beginning Phase

The very beginning of any project in clinical or 
outcomes research involves outlining some basic 
principles.3 First, what exactly is the question the 
researcher wishes to address?  Second, what data is 
the most relevant to collect to answer that question? 
Third, how can a database be structured to make data 
analysis easy and fluid, and what analyses are best 
suited for the type of data the researcher has?  Lastly, 
what is the best method by which to disseminate the 
results?

Developing a question

Often forgotten, the most important step to beginning 
a research project is the identification of a research 
question.4  The research question must be interesting, 
pertinent, and answerable with data the researcher 
can access, and usually requires a thorough review of 
the related literature.  Without a priori knowledge of 
the question a researcher wishes to answer, it is
difficult to collect appropriate data and, subsequently, 
perform a data analysis that produces meaningful 
information.  At worst, forming a database without 
first determining a feasible research question will 
infuse insurmountable bias (systematic error resulting 
from flawed study design or conduct) into the study 
as a result of data mining.  In addition, even if a 
meaningful research question is developed later on, 
further data parameters not previously collected may 
be necessary to fully answer the question, resulting in 
further expenditure of time and effort. 

Study Design

After a research question has been developed, a 
researcher must consider which study design is most 
appropriate to answer the question.5, 6  Should the 
study be prospective or retrospective?  Prospective 
studies are often appropriate in comparing 
interventions where there is a reasonable degree of 
uncertainty as to which treatment option is best.  This 
study design allows for the largest degree of control 
over outside variables.  Subjects can be randomized 
to the treatments in various ways in order to account 
for confounding (the chance that some factor other 
than the intervention is responsible for the outcome).  
The downside of prospective studies is that they are 
cost-, time-, and labor-intensive, making them 
frequently difficult for a resident or busy practitioner 
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to accomplish.  Retrospective studies are often 
inexpensive, less labor-intensive, and provide results 
in a shorter time period than a prospective study.  
These benefits come at the cost of introducing the 
possible effects of confounding or bias.  In many 
cases, these problems can be partially corrected with 
appropriate statistical analysis and carefully selected 
historical controls.7  Though bias and confounding 
are frequently cited as limitations in retrospective 
studies, they can also exist in poorly controlled or 
randomized prospective studies.
The classic example of a prospective study is the 
randomized controlled trial (RCT), which involves 
comparing multiple interventions or the utility of an 
intervention vs. placebo.  These are considered the 
gold standard of studies, which, if well designed and 
controlled, provide the most valid and “true” results.  
There are, however, other prospective study designs
which are easier to implement.  A temporal 
comparison or “pre-post” study can examine the 
effect of a treatment(s) by examining the same 
population before and after an intervention, with each 
subject acting as their own control.  A prospective 
cohort study involves the identification of subjects’ 
previous exposures by the researcher, who then 
follows the subjects forward in time to see who 
develops the outcome of interest.  There are several 
types of retrospective studies as well.  In a case-
control study, cases are chosen retrospectively by 
outcome, and appropriate controls (matched or not) 
are chosen who lack the outcome of interest.  Both 
groups are then examined for previous exposures.  
This type of study is often appropriate when the 
outcome of interest is rare, since it ensures an 
adequate number of cases.  A retrospective cohort 
study is a design in which subjects are chosen for the 
presence or absence of a certain exposure or 
treatment (e.g. patients treated surgically and non-
surgically for the same condition), and then examined 
for an outcome which has already occurred.  This 
type of study is appropriate when the exposure or 
treatment of interest is not common.  A case series is 
considered a lower Level of Evidence, but is 
appropriate to report the safety of a surgical 
technique or describe outcomes of a treatment or 
injury for which controls are not available.  This type 
of study is limited because there is no evidence that 
the outcome, whatever it may be, would not have 
occurred in the absence of the treatment or injury.  
The question of whether to use a study design similar 
to that of previous studies of the intervention or 
exposure or differently is a matter of what question 
the study is meant to answer.  If the study is designed 
to contribute to or refute a growing body of literature, 
then the best design is one similar to studies 
performed in the past so that they can be directly 

compared in a meta-analytic fashion.  On the other 
hand, if past studies utilized a suboptimal study 
design or were flawed in data analysis, a researcher 
may wish to perform a study with a more appropriate 
design at the expense of being able to directly 
compare to previous studies
.  
Outcome and Data Selection

The next task is to determine what type of outcome is 
the most appropriate to collect for a given exposure 
or treatment of interest.8  The most appropriate 
outcomes are patient-centered, and should be 
considered important to both patient and surgeon.  
Outcomes instruments, such as the SF-36 and TESS9

surveys, are appropriate if they are valid (meaning 
they adequately measure what they are intended to 
measure) and the measures they contain fulfill the 
aforementioned criteria.10, 11  Otherwise, other 
simpler variables such as return to work, return to 
sport, etc., can be used as outcomes, and are 
universally clinically significant.  
Researchers should do their best to avoid surrogate 
endpoints or variables.12  Surrogate variables are 
outcome measures thought to be directly linked to the 
outcome of interest, and are used when the actual 
outcome of interest is rare or takes many years to 
occur.  The classic surrogate variable in orthopaedic 
research is deep vein thrombosis (DVT) as a 
surrogate for pulmonary embolus (PE) in researching 
prophylaxis for postoperative thromboembolic 
events.  The event we actually care about (PE) is too 
rare to research as an outcome, so we research 
something thought to be directly related to the 
development of that outcome (DVT). However, there 
is currently no way to determine which patients with 
DVT will go on to develop PE, and many will not 
(DVT is necessary, but not sufficient, for PE).  
Therefore, despite its acceptability in clinical 
practice, DVT is questionable as a surrogate variable 
for PE.  This type of issue occurs throughout 
orthopaedic research.  
Additionally, it is important to give some thought to 
other data which must be collected outside the 
primary outcome in order to account for 
confounding.13  Possible confounders are obtained 
from a detailed review of the literature based on what 
has been shown to be clinically important in the past, 
or can also be based upon anecdotal clinical evidence 
(“In my practice, patients with characteristic A 
always seem to do worse.”).  These variables must 
also be included in your statistical analysis in order to 
determine their true effect.
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Sample Size and Power

Sample size and power analyses should be based 
upon the primary outcome of interest.14  For example, 
if the primary outcome of interest is a continuous 
variable (see discussion on variable types in 
Database Development, below), and the t-test will be 
used for analysis, then a power analysis based on the 
t-test should be used when planning the study.  Some 
common sample sizes can be calculated via web 
based calculators.15 Many of these calculators require 
that you select a control for type I error or α, a control 
for type II error or β, and a delta value.  Type I error 
is the chance of finding a difference where none 
exists.  The most often tolerated is a type I error rate 
of 0.05, and is the same as saying that one is 95% 
certain that the outcome resulted from the variable of 
interest and was not due to chance alone.  Type II 
error rate is the chance of not finding a difference 
where one actually exists.  One minus the type II 

error rate is referred to as power and 80% power is 
considered tolerable by convention. An 
underpowered study that finds no difference is less 
meaningful than an adequately-powered study that 
finds no difference, because in an underpowered 
study there is a strong likelihood that the negative 
result occurred by chance.  Delta is the change the 
researcher wishes to detect, and should be considered 
clinically significant.  It is considered less often than 
type I and type II error, but is of similar if not greater 
importance.  This number is most often derived from 
past studies or taken from clinical experience, and is 
vitally important to the power calculation.  The larger 
the delta is (the larger the change expected), the 
smaller the sample size would need to be.  Delta must 
also be individualized; for example, the delta 
required in a power calculation for a continuous 
outcome variable is a continuous number, whereas 
the delta for a binary variable is a percentage.

                   Figure 1: Steps to beginning an outcomes research project

Data Collection and Analysis

There are many different ways to collect data.  The 
“best” way to collect data will often depend on the 
study question, study design, the resources available 
to the investigators, and the logistics of collection.  
Database mining, phone interviews, patient visits and 
chart review are all viable options.  Each has its own 
limits and is subject to its own sets of problems.  
Public or private databases are a convenient source of 
data; however, a researcher is limited to the data 
fields available in the database and missing data is 
often not recoverable.  Misclassification bias, a 
systematic distortion of information resulting from 
inaccuracy in measurement (e.g. on a survey, a 
patient may report a superficial wound infection after 
arthroplasty as an “infected total hip”), may also be 
present and difficult to account for.  Chart reviews 
are a common way of obtaining data, especially in 
retrospective studies.  Data obtained in this way may 
be slightly less vulnerable to misclassification due to 

the medical knowledge of its authors, but missing 
data can still be difficult to reconcile.  Phone 
interviews and patient visits are far less prone to 
missing data, but are generally more labor-intensive 
and may be vulnerable to responder bias (the 
censoring, intentional or unintentional, of information 
on behalf of the subject). 

Database Development

Database development is a critical phase in the 
project, but the overall design should be pre-
determined in the initial phases based upon what data 
is being collected.  The best method in which to 
record the data will depend on what form the 
outcome of interest takes.  Binary data are data in 
which a characteristic either does or does not exist:
dead or alive, heads or tails, and surgery or no 
surgery are examples of binary data. Categorical data 
are data in which logical categories divide the data, 
and can be either nominal or ordinal. Nominal data 

Beginning steps to starting a research study:

1. Develop a question

2. Decide on an appropriate study design to answer the question

3. Decide on an outcome of interest and study variables

4. Perform a power analysis to determine how many subjects are needed
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are data which have no inherent value or order, just 
names. For example, Zimmer TM and DePuy TM are 
brands of knee replacement prostheses, but have no 
inherent order.  Ordinal data have a rank order, but 
there is no scale between numbers.  The classic 
example is the pain scale: a patient who rates their 
pain as a 6 does not necessarily have twice the 
amount of pain as someone who reported a 3.  
Continuous data are data that are numeric and have 
some scale associated with them, such as 
temperature, range of motion, and follow-up time.  
There are also special types of data such as time 
scales and count data that have special tests 
associated with them, and are beyond the scope of 
this introductory article. 
During both study design and database development, 
it is important to note all significant confounders, 
along with the independent variable of interest, and 
the form they will take.  For example, suppose our 
research question was “Does cigarette smoking 
increase infection risk following fracture surgery?”  
Infection would be our dependant variable (binary: 
either infection or no infection), and smoking would 
be our primary variable of interest, and could be 
binary (smoker or non smoker), categorical (never 
smoked, current non smoker, smokes less than a 
pack/day, smokes greater than a pack/day), or 
perhaps even continuous (number of cigarettes 
smoked per day).  The form the variable takes should 
be based on what past research has shown to be 
significant.  Previously reported confounding factors 
must be considered, such as patient age16, 17

(continuous or binary [i.e. <65 years old and >65 
years old]), diabetic status16 (binary), whether the 
fracture was open or closed16 (binary), Gustilo 
classification17 (ordinal), OTA classification16, 18

(ordinal), the location of the fracture16  (nominal), 
and injury mechanism or energy17 (nominal or 
ordinal, respectively).  Continuous data always 
provide more information than binary data, and 
should be used whenever possible.
Some special statistical considerations exist in 
outcomes research, but are relatively minor if 
adequately planned for and understood in advance.  
The first of these which commonly occurs is the 
necessity of adjustment for multiple tests.  The 
overall type I error tolerance for most studies is 0.05, 
but if multiple tests are conducted (i.e. one for each 
confounder), then there is an increased chance to 
commit a type I error (the more things you look for, 
the more you will find just by chance).  To ameliorate 
this problem, a correction can be made for multiple 
tests, with the most well known and conservative of 
these is the Bonferroni correction.19  This correction 
can be performed with the usage of online 
calculators.20 Another consideration is the frustrating 

problem of missing data.21  Missing data can create 
bias if dealt with in ways which are not appropriate.  
Fortunately, most commercially available software 
packages use listwise deletion (they remove any case 
in which missing data is present).  This method can 
decrease the power of a study by not using all of the 
available data, but avoids the bias which can devalue 
your study.

Data analysis

One of the most important steps in data analysis is to 
determine which family of statistical tests is
appropriate for your data: parametric or non 
parametric.22  Parametric tests are distributional, 
which means they assume that the population that 
your sample was derived from has some sort of 
standard distribution, typically based on the normal 
bell curve.  As such, they are not always appropriate 
for binary (sigmoid) or categorical (multimodal) data.  
Parametric tests also assume a relatively large sample 
size (at least greater than 20), which make them 
inappropriate when rare exposures or outcomes 
necessitating a small sample size.  Other assumptions 
apply to specific tests, but that is beyond the scope of 
this paper.  If the data, the sample, or the population
do not fit these criteria, a non-parametric or non-
distributional test is appropriate.  The implicit 
assumption of non-parametric tests is that the 
population which you are using the test to make 
inferences about is similar in distribution to your 
sample, regardless of what that distribution may be.
The appropriate test for a given situation is 
determined by the number of groups to be compared, 
what type of data exists in each group, and whether 
or not a parametric or non parametric test is 
appropriate based on distribution and sample size. A 
summary of tests in various situations is outlined in 
Table 1. This table by no means captures every 
possible situation, but summarizes many of the tests 
which are useful in outcomes research. Multiple 
variables can be tested by using various statistical 
procedures. Much like those available for sample 
size and power calculations, various web based 
calculators exist to help calculate t-tests23, 24, Chi 
squared tests, and Fisher’s exact tests25.  Most if not 
all of the tests outlined on Table 1 can be calculated 
with commercially available software such as SPSS 
(SPSS Inc.; Chicago, Il.), SAS (SAS Institute; Cary, 
NC) or STATA (Statacorp; College Station, TX).  In 
addition, many of these tests can be performed with 
Microsoft Excel (Microsoft Corp; Redmond, WA).  
Most simple tests can be calculated and interpreted 
by anyone with a cursory understanding of statistics. 
However, multiple regression analyses should be 
performed or reviewed by someone with advanced 
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Number of groups Type of 
independent 
variable

Parametric test Non 
parametric test

Multiple variables

2 groups (related) Continuous Paired t-test Wilcoxin, sign 
test

Logistic regression *

2 groups (independent) Continuous Independent samples      
t-test

Mann-Whitney 
U

Logistic regression *

3 or more groups Continuous One way ANOVA Kruskal Wallis, Linear regressionǂ
Continuous variable Continuous Correlation (Pearson) Correlation 

(spearman)
Linear regression

2 or more Nominal or binary 
or categorical

Chi squared test Fisher’s exact 
test

Logistic regression*

2 or more Time series Parametric life table 
analysis

Kaplan Meier 
log rank

Cox regression

Table 1: Appropriate usage of various statistical tests.

*dichotomous dependant ǂ if the dependant is continuous, multinomial regression if the dependant is 
categorical with greater than two categories.

training or understanding in statistics, and many of 
these procedures require post-hoc analyses to assure
that the test procedures are valid. One specific output 
worth special mention in outcomes research is the
Odds Ratio (OR).  Odds ratios are often used to 
compare two groups, one that was exposed to a
certain treatment, injury, or exposure, and one that 
was not, and to examine them both for the presence
of a certain outcome. The result is expressed in terms 
of the odds of observing the outcome in the exposed 

group compared to the unexposed group.  The 
equation that describes the odds ratio is odds of an 
event in the exposed over odds of an event in the 
unexposed , based on the standard table shown in 
Figure 2.  Incidentally, odds ratios which are adjusted 
for multiple confounding variables can be generated 
using multiple logistic regression, with the assistance 
of someone with statistical experience.

Figure 2- Contingency table for generating odds ratios. 

Presenting the Data

Presentation of the data is at least as important as any 
other phase of the project.  A description of your 
statistical analysis detailed enough to allow another 
group to perform a confirmatory study should be 
included in your Methods and Materials section.  A 
well presented graph or table placed in your Results
is invaluable in getting the point of the study across. 
Pictures and visual aids presented in a paper enhance 
its interest to the orthopaedic community at large.  

The decision of where to try to publish the paper is 
sometimes difficult, but a preliminary target journal 
should be identified during your initial study 
planning.  This does not prevent having to submit to 

more than one journal prior to eventual publication.  
Negative studies are known to be more difficult to 
have accepted for publication, but often contain 
invaluable information which should be 
disseminated.  Statistically insignificant studies are 
faced with this same bias, but it is important for 
authors and reviewers alike to realize that statistical 
significance does not equal clinical significance.  
Few would make the distinction between a 95% and 
94% certainty that your results were not due to 
chance alone (p = 0.05 and p = 0.06, respectively) if 
you are presenting them with a successful treatment 
with minimal morbidity for their patient population.  
Consideration must also be given to whether or not 
the article would be interesting to a more general 
orthopaedic audience, or if it is more specific to a 

Disease No Disease
Exposed A B
Unexposed C D



Orthoepidemiology Baldwin et. al

University of Pennsylvania Orthopaedic Journal Volume 19

subspecialty and would thus be more appropriate for
a journal within that subspecialty.  Sometimes the 
article may be appropriate to an audience which is 
broader than the orthopaedic community, and an 
outside journal should be considered.

Conclusions

Embarking on a research project can be a long and 
arduous task.  However, careful planning at the study 
outset can ensure the fruits of this task are a long 
lasting contribution to the orthopaedic literature and 
hence clinical practice. Thorough planning and
meticulous execution of the research plan will 
minimize the chances the contribution will be tainted 
by confounding and bias. This is particularly 
important in retrospective research in which special 
care must be taken to limit bias and control for 
confounding with special statistical techniques.
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