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Missing Data in Orthopaedic Research

Keith D Baldwin, MD, MSPT, MPH, Pamela Ohman-Strickland, PhD

Abstract

Missing data can be a frustrating problem in 
orthopaedic research.  Many statistical programs 
employ a list-wise deletion by default to eliminate
missing data.  This elimination may be helpful to 
conduct the analysis but its use without first 
considering the type of data, and the possible 
mechanisms of the “missing ness” of data can lead 
to a loss of power, or to biased estimates.  
Orthopaedists without a statistical background 
should have at least a superficial knowledge of how 
to deal with missing data.  This article represents a 
review of different methods of dealing with missing 
data and experimental demonstration of weaknesses 
and strengths of these methods.  The goal of this 
article is to provide orthopaedists with a limited 
statistical background a basic understanding of the 
effects of missing data, alternatives to list-wise 
deletion, and ways of utilizing each technique when 
different mechanisms of missing data exist.  In 
addition, this article explores the new options 
available in SAS versions 8.1 and higher to deal 
with missing data without using macros.

Introduction

Missing data presents a significant challenge 
to orthopaedic researchers of all different calibers.  
The central conundrum of missing data is to produce 
estimates that mimic the non-existent or missing data, 
while keeping the uncertainty inherent in missing 
values.1  For researchers with a significant budget, 
and ample time, the solution is to hire a brilliant 

biostatistician to identify the mechanism (if any) for 
the missing data, and provide a model for the 
“missingness” of the data, that will provide suitable 
estimates accounting for possible biases. Typically,
in a large clinical trial, the observations with missing 
values will simply be deleted (listwise deletion) to 
avoid bias, unless there is evidence that there is some 
mechanism to the “missingness” of the data that is 
relevant to the drug or procedure under investigation 
(a non-ignorable mechanism).

Missing data in smaller studies can be more 
problematic. These studies include pilot studies, 
research that is done by medical students, or 
unfunded research by housestaff or attending 
physicians.  Typically, these missing observations 
will be dealt with by eliminating them, as this is the 
default in most statistical programs. Listwise deletion 
in this setting may still be a reliable method as it is 
relatively unbiased provided the data are missing 
completely at random (MCAR). However, if the 
study is small, or the amount of missing data is above 
5 to 10% of the total data set, significant loss of 
power is possible.2

The goal of this review is to identify a few 
methods, that are accessible to medical students, 
residents, and attending physicians who do not have a 
statistician readily available.  These methods in 
general will be easily applicable, but will depend on 
basic assumptions that are illustrated below.  
Missing completely at random (MCAR):  This is the 
most powerful assumption.  Suppose there are two 
variables X and Y.  Consider values for Y.  The 
values if missing are MCAR if the probability of 
missing data on Y is unrelated to the value of Y and 
unrelated to the value of any other variable in the 
data set.2

Missing at random (MAR): This assumption is that 
the probability of missing a variable Y is unrelated to 
the value of Y, but may be related to the value of one 
or more variables in the data set.2  This assumption is 
weaker, and impossible to test (because the data are 
missing).2 For example, consider a case where it was 
desired to determine if hospital X treated more 
patients daily than hospital Y. If the probability of 
missing data on the number of patients treated 
depended on which hospital they were in, but within 
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each hospital, the probability of missing data on 
number of patients was unrelated to the number of 
patients treated, MAR would be satisfied.2   In this 
case, the missing data is a result of bad record 
keeping that is unrelated to the value of the number 
of patients treated. 
Ignorable missing data: This condition is satisfied if 
first, the data is MAR or MCAR and second, the 
mechanism governing the pattern of missing data is 
unrelated to the mechanism of effect to be measured 
(in the case illustrated above, the probability of 
missing a case is unrelated to the number of patients 
treated in that case).2

Non-ignorable: Usually this occurs in cases where 
the missing data are not MAR. The mechanism of 
missing the data must be modeled. In the previous 
example, if it was discovered that hospital Y 
systematically underreported low census days, this 
would be an example of non-ignorable missing data.2  
If a non-ignorable mechanism for missing data is 
suspected, a biostatistician (preferably one with 
interest in this area) should be consulted.

Methods

List-wise Deletion:

This method is the simplest method 
available.  Most statistical packages utilize this as the 
default method of calculating regression estimates 
and other test statistics.  This is probably the best 
method to use if:  1. The data are MCAR, and either 
2. The data set is large, or 3. The amount of missing 
data is rather small relative to the total amount of 
data.2,3 If the second or third condition is not satisfied 
then the power of the estimates can be seriously 
reduced.2,3  If the data is MCAR, the smaller sub 
sample will simply be a random sub sample of the 
original population.2  If the original sample is 
normally distributed, the estimates calculated will be 
relatively unbiased.  However, the standard errors 
will be larger, due to the smaller sample size.2  In list-
wise deletion no data is imputed, thus, any error that 
is built in is inherent to the sampling methods or 
violations of the MCAR assumption.  List-wise 
deletion is less trustworthy for data that are MAR, 
unless the data that are MAR are the independent 
variables.4   In this case list wise deletion is very 
robust to violations of MAR of independent variables 
in a regression analysis.2  The dependant variable 
however must be MCAR, and other variables must be 
MCAR with respect to the dependant variable.  
Suppose in our hospital census example the 
probability of missing data on the number of patients 
treated depended on which hospital they were treated 
in. However, within each hospital, as long as the 

probability of missing data on number of patients 
treated was unrelated to the number of patients 
treated, regression estimates based on list-wise 
deletion (the smaller data set) would be unbiased.
List-wise deletion is also best for variables where the 
probability of the data being missing is dependent on 
the value of that variable (not the dependant).  E.g., if 
hospital X, and hospital Y underreported slow census 
days, but that under reporting was uniform, list-wise 
deletion would be appropriate. Therefore -in 
summary, list-wise deletion is appropriate where:

1. The data are MCAR, or at least MCAR with 
respect to the dependant variable.

2. The data set is large and/or the amount of 
missing data is small relative to the total 
sample.

3. It is undesirable to have to model the 
missing data.

Pair-wise Deletion:

This method is mentioned briefly here, 
because it can produce some confusing situations 
when attempting to determine an appropriate model 
in regression analysis, in addition to producing 
problems with bias. Pair-wise deletion is a very 
enticing option because it allows one to use more of 
the data from the initial data set than does list wise 
deletion.  In list-wise deletion, if one parameter is 
missing, that entire observation (all variables) is 
deleted.  In pair-wise deletion, all of the data are used 
for all of the analyses for which they can be used. So 
for computation of a covariance matrix, all cases of X 
and Y are considered; whereas for list wise deletion, 
only the cases with full data would have been 
considered.4 The problem with this method is that if 
there is any violation of MCAR, there can be serious 
problems with bias.2  So the decreased standard 
errors that are observed with pair-wise deletion 
(because more information is used) are not worth the 
price that is paid in terms of biased estimates. As a 
result, if any deletion is used, list-wise deletion is 
recommended because of the aforementioned 
reasons, in addition to the decrease in confusion 
when using automated mechanisms of model 
building.  In addition, pair-wise deletion can make 
selection of linear models with computer programs 
confusing.

Dummy variable adjustment:

This method makes use of a dummy variable 
to represent the fact that there is missing data for a 
certain variable (e.g rather than male and female, 
there would be 3 groups, male, female and missing) 
This method, though appealing, turns out to have 
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serious problems with bias, and can be very 
confusing, even under the best of circumstances 
(MCAR).2,5,6

Weighting techniques:

This method is commonly used when unit 
non-response exists.  Unit non-response is said to 
occur when, for some reason, some individual fails to 
return a survey, answer a research question, or in 
some other way is recruited, but does not participate.  
This method assumes that there is demographic 
information present about the subject that would 
allow for comparison with others.  Then, a subject 
with similar demographic characteristics is assigned a 
weight of 2 to account for the fact that a 
demographically similar subject’s data were missing.  
This method eliminates all variability between 
demographically similar data points, which can affect 
standard errors adversely.3  In addition, this technique 
does not account for stratification of samples, which 
could make weighting cumbersome.

Maximum Likelihood:

Simple imputation allows for calculation of 
estimates based on maximum likelihood. The 
expectation maximization (EM) algorithm is a 
commonly used statistical method for obtaining 
regression estimates in the presence of missing data.  
This approach in essence creates a complete data set 
by “filling in” the missing values.  Analysis is then 
conducted using this complete data set.  Technically, 
the method is comprised of two steps, an expectation
step, and a maximization step.  The two steps are 
repeated many times until eventually they converge 
to the maximum likelihood estimates.2  The 
expectation (E) step consists of imputing of the 
missing values using information from the observed 
data and previous estimates of the regression 
parameters via regression.  The maximization step 
estimates new values for the regression parameters 
and variance covariance matrix using the completed 
data set from the previous E-step. The process is then 
started with the E-step, such that parameters have 
been estimated using list-wise deletion.   The iterative 
process continues until the estimated parameters are 
barely changing from one iteration to the next.  The 
advantage of this method is that it uses all of the 
available predictors for imputing missing data.  
Software is available to implement the EM algorithm 
and, hence, simple imputation.  However, this 
software does not typically take into account that the 
data are imputed, hence the standard errors are 
inappropriately low, and the test statistics are 
inappropriately high.4  Unfortunately, the techniques 

used to adjust the standard errors for “filling in” the 
missing data are not available in most “user-friendly” 
software, and would likely require the assistance of a 
statistician who is familiar with this software.2  If 
simple imputation is used without making such 
adjustments, it will lead to a higher chance of making 
a Type I error.  

Multiple Imputation:

Multiple imputation is a process that uses 
random error to increase the standard errors relative 
to those calculated via simple imputation.  The 
observed data set is completed multiple times with 
different plausible values for the missing data.  The 
range of standard errors from the multiple completed 
data sets is used to estimate the appropriate increase 
in the standard errors due to the uncertainty of the 
missing values.   Among the upsides of multiple 
imputation are that it produces unbiased estimates 
when the data are MAR.2 The model can even be 
used modified, presumably through consultation with 
a statistician, to model incomplete data with non-
ignorable mechanisms.  Multiple imputation is 
available with conventional software that almost 
anyone can use, in many different situations.4  
Multiple imputation is the procedure of choice in 
many situations, such as when the dependent variable 
is MAR, or when there is a large amount of missing 
data, or a relatively small data set (That is to say, 
most situations where the list-wise deletion would be 
unacceptable and collecting more data would not be 
feasible). The major drawback of multiple imputation 
is that, because it uses a random component, slightly 
different estimates will be obtained every time it is 
used.4  One must specify if multiple imputation is 
employed so researchers who re-run your data will 
not be surprised when their results differ from the 
original results.  

In order to use multiple imputation, data 
should be MAR. The model created should be the 
final model used in analysis, that is to say, all 
transformation, and interactions should be identified 
prior to imputation.8

Procedurally, one of the simplest and most 
widely used programs that has a multiple imputation 
procedure is SAS (versions 8.1 and higher, Copyright 
(c) 2003-2004 by SAS Institute Inc., Cary, NC, 
USA).  This procedure can be run by the following 
set of generic code (The Y value must be included):
PROC MI data=<dataset> out= <output data set 
name>
var <variable1 variable2….variableN>;
run;
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This procedure uses estimates from the EM 
algorithm as starting values, does a default of 200 
“burn in” iterations, and then 100 iterations (default) 
between each imputation.  There is a default of 5 data 
sets created (so if the original data set had 100 
observations, the output data set would have 5 data
sets x 100 observations = 500 total observations).  
The output data set also has a variable _imputation_ 
that would have a value of 1-5 in the default setting 
to indicate which data set.  A more complicated set of 
code is listed below with some of the more useful 
options in PROC MI:

PROC MI data=<dataset> out= <output data set 
name> seed=<any number>
nimpute=<number of imputations (data sets 
created)>
minimum=<number var1 number var2…number 
varN>
maximum=<number var1 number var2…number 
varN>
round= <what each variable should be rounded 
to>;
var <variable1 variable2….variableN>;
MCMC nbiter=<number “burn in iterations prior 
to 1> niter= <number of     
iterations between imputations>;
run;

The seed option in the first line allows 
duplication of the same parameter estimates. The 
nimpute option in line two dictates the number of 
data sets that are created.  Note, that if you make 
nimpute=0 then the MI procedure is simply an EM 
algorithm using the maximum likelihood method 
previously mentioned.  The “minimum” and 
“maximum” statements in lines 3 and 4 protect 
against hidden extrapolation (making estimates 
outside of the range of your data set). The round 
option allows the imputed values to be rounded in 
any way specified. The MCMC statement specifies 
that a Markov chain Monte Carlo method is being 
used to impute the values.  It is the default, and this 
statement has in its options to specify the number of 
“burn in” iterations prior to the first, and the number 
of iterations between imputations.  If more are 
specified, the likelihood of convergence of estimates 
is increased, and the chances of statistical 
dependence are decreased although not assured, some 
experts believe that the default is sufficient in most 
cases.4  Under this statement, other useful options are
time series plots, and autocorrelation plots.  These 
options are a good start for the appropriate usage of 
PROC MI.  The output for PROC MI will specify the 
method of imputation (MCMC at default), how the 
initial estimates were found, the number of 

imputations, the number of “burn in” iterations, the 
number of iterations between imputations, and the 
seed for the random number generator.  In addition, 
the MI output provides information on the pattern of 
the missing data, a covariance matrix of EM 
estimates, as well as increase in variance, parameter 
estimates, fraction of missing data, and relative 
efficiency.

Some astute readers may note, however, that 
by using PROC MI, multiple data sets are created.  
How can a single set of parameter estimates be 
obtained when there is random variability inherent to 
PROC MI?  The answer is PROC MIANALYZE.  
First, the output data set must be sorted by 
_imputation_;

PROC SORT data=<output data set name>;
by _imputation_;
run;

Next, PROC REG must be used to combine the 
regression estimates and covariances into one data 
set.

PROC REG data=<output data set name> 
outset=<regression coefficient output 
data set name> covout;
model <Y>=<X1 X2 X3….XN>;
by _imputation_;
run;

So in essence, the usual regression statement is run 
for each of the five (at default) data sets, to get 
regression parameters.  The covout option at the end 
of the first line tells SAS to include the covariance 
matrix in the data set.  Next, PROC MIANALYZE 
will combine them.

PROC MIANALYZE data=< regression 
coefficient output data set name>;
var <intercept variable 1 variable 2….variableN>
run;

It is possible to calculate the number of 
imputations needed, but this calculation is beyond the 
scope of this article. More imputations translates into 
more efficiency.  Efficiency should be high, but if it 
is 95% or greater, typically adding more imputations 
will provide little benefit

One word of warning when using multiple 
imputation with this or any other procedure is that 
multiple imputation does not account for interactions 
or non linearities in data sets.  It is advised that prior 
to doing multiple imputation, a regression with list 
wise deletion is carried out, with diagnostics.  If 
interaction is detected, then a variable should be 
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generated for the product of the two terms 
interacting.2  If non- linearities are detected, the 
suitable transformation should be carried out prior to 
imputation.2  After these methods are carried out, 
imputation can proceed as before.  
In summary, multiple imputation is recommended as 
a method when:

1. The data are MAR, especially if the 
dependant variable is MAR.

2. The data set is small, or the amount of 
missing data is large relative to the size of 
the data set.

3. List wise deletion is unacceptable for some 
other reason.

Results

Example 1: (MCAR)

The following example illustrates PROC MI and 
MIANALYZE versus a complete data set, versus 
listwise deletion and maximum likelihood with the 
same missing data.  The “full” data set was a set of 
128 observations from the NTDB (American College 
of Surgeons 2004).  The objective was to fit an 
ordinary least squares regression line in order to 
adjust cost (charges) of internal fixation versus partial 
hip replacement as a treatment for femoral neck 
fracture for age, gender, length of stay (LOS), injury 
severity (ISS) and comorbidities.  When the complete 
data set was investigated with diagnostics, the 
regression equation was found to have a non-
constancy of error variance. A box cox procedure 
indicated that a log transformation would provide an 
adequate correction for the non-constancy of error 
variance.  In addition, a significant interaction was 
found between age and gender.  A new variable was 
created to describe that interaction (agegen). Table I 
demonstrates the behavior of the data when the data 

are MCAR (random deletion by ID number of every 
6th observation. Note that standard errors for simple 
imputation (maximum likelihood) are lower than for 
other methods. This is because this method tends to 
bias towards the mean, which produces narrower 
confidence intervals, and lower p values (table I). 
Table I shows that Listwise deletion often performs 
in a superior fashion to Multiple Imputation with 
MCAR data. This is because with MCAR data, 
Listwise deletion tends to be a random subset of the 
whole data set, and so the loss of power is less 
important unless the amount of missing data is large.
Example 2 (MAR):

Consider a case where the data was not MCAR. 
Suppose for some reason hospitals reported charges 
for females less often than for males, but that the 
reporting of the charges did not depend on the value 
of charges.  In this case, hospital charges (the output 
variable) are MAR. For this data set, the same 
elimination rules are used as in the prior example for 
the other variables, but now for gender=female, each 
fourth point of charges is missing, whereas for males, 
the same values as previously are missing (randomly 
one every 13). Table II summarizes the results of this 
experiment. Note that Gender has become non-
significant with listwise deletion.  This example 
demonstrates that when data is MAR, listwise 
deletion may not perform as well as multiple 
imputation in certain circumstances. In addition, note 
that the R squared is biased upward with listwise 
deletion. Recall that R squared compares the sum of 
squares for regression (SSR) to the sum of squares 
error (SSE).  It is plausible that because of random 
elimination of data points the SSE may have been 
decreased (by chance the data farther from the mean 
were eliminated)

Method
AGE b1

(SE)
AGE

p-value
ISS* 

b2(SE)
ISS *

p-value
Gender 
b3 (SE)

Gender
p-value

Age*Gender 
b4 (SE)

Age*gende
r

p-value
N† R2

Complete
-0.033 
(0.007)

<0.0001 0.062 
(0.016)

0.0001 -1.906 
(0.665)

0.0049 0.022
(0.008)

0.010 128 0.605

Listwise 
deletion

-0.024
(0.009)

0.0071 0.049
(0.018)

0.0098 -1.452
(0.859)

0.0958
0.015

(0.011)
0.1533 69 0.672

Multiple 
imputation

-0.030
(0.008)

0.0002 0.041
(0.020)

0.0563
-1.349
(0.729)

0.0661
0.0145
(0.009)

0.1108 640 0.601

Max 
Likelihood

-0.030
(0.0007)

<0.0001 0.053
(0.002)

<0.0001 -1.427
(0.071)

<0.0001 0.016
(0.0009)

<0.0001 128 0.616

Table I : Select Regression Parameters, standard errors and, P-values of parameters with different methods 
for Missing Completely at Random (MCAR)data Age*Gender indicates the interaction term between 
Age and Gender

* ISS=Injury severity score
† Multiple imputation has N=640 because 5 data sets x 128 observations
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Example 3 (Non-Ignorable):

Finally, consider a data set where the 
mechanism of missing data is non-ignorable.  If the 
charges (dependant variable) are in the top quartile, 
the last 4 out of every 5 are eliminated.  If the charges 
are in the second to top quartile the last 3 out of every 
5 are eliminated.  If the charges are in the third 
quartile the last 2 out of every 5 is eliminated, all of 
the data in the last quartile are retained.  The other 
missing data are the same as the first set.  Since the 
data are missing according to the value of the output
variable, this mechanism is non-ignorable. The 
results for the complete data set, list-wise deletion, 
multiple imputation and maximum likelihood are 
summarized in table III. The power problems of list-
wise deletion are accentuated by the larger amount of 
missing data in this example.  In addition, serious 
problem with bias are introduced in the estimates, in 
all methods, especially for gender, and the interaction 
term between age and gender.  Problems like this will 
be typical if the mechanism is non-ignorable.  In this 
case, the mechanism of missing data would need to 
be modeled.

Discussion

Missing data will continue to be an issue in 
orthopaedic research as long as it exists.  The 

absolute best solution to missing data is not to have 
any.  If there is missing data in the data set, and 
reconciliation of this missing data is irreconcilable, it
is important to recognize whether the “missingness” 
is ignorable, and finally if it is random.  Most often 
listwise deletion is appropriate.  It is however 
important to recognize when it is not, and have tools 
to deal with this situation should it arise. When there 
is some suspected mechanism that has led to missing 
data or when there is a longitudinal or a more 
complex model needed for the data we strongly 
recommend consulting a statistician. SAS 8.1 or 
higher provides programming options by which even 
non-statisticians can easily perform these functions.  
We have been able to demonstrate through the 
examples presented in this article that listwise 
deletion is robust in most cases, but if the amount of 
missing data is large, significant power can be lost by 
using it.  Multiple imputation is useful if the amount 
of missing data is large relative to the total n, or if the 
data is not missing completely at random.  Non-
ignorable missing data must be appropriately dealt 
with if biased estimates are to be avoided.  Except in 
special circumstances, pairwise deletion, weighting, 
dummy variables, and simple imputation should be 
avoided because of problems with biasing estimates.

Method
AGE b1

(SE)
AGE

p-value
ISS* 

b2(SE)
ISS *

p-value
Gender b3

(SE)
Gender
p-value

Age*Gender 
b4 (SE)

Age*gender
p-value

N† R2

Complete
-0.033 
(0.007)

<0.0001 0.062 
(0.016)

0.0001 -1.906 
(0.665)

0.0049 0.022
(0.008)

0.010 128 0.606

Listwise 
deletion

-0.022
(0.008)

0.0104 0.072
(0.020)

0.0008 -1.598
(0.859)

0.0686
0.017

(0.011)
0.1069 59 0.713

Multiple 
imputation

-0.028
(0.008)

0.0005 0.076
(0.021)

0.0021 -1.554
(0.709)

0.0299 0.017
(0.008)

0.0531 640 0.614

Max 
Likelihood

-0.028
(0.0007)

<0.0001 0.078
(0.002)

<0.0001 -1.556
(0.070)

<0.0001 0.0173
(0.003)

<0.0001 128 0.625

Table II: Select Regression Parameters, standard errors and, P-values of parameters with different methods 
with Missing at Random (MAR) data Age*Gender indicates the interaction term between Age and 
Gender

* ISS=Injury severity score
† Multiple imputation has N=640 because 5 data sets x 128 observations

Method
AGE b1

(SE)
AGE

p-value
ISS b2
(SE)

ISS
p-value

Gender 
b3(SE)

Gender b5
p-value

Age*Gender 
b6 (SE)

Age*gender
p-value

N R2

Complete
-0.033 
(0.007)

<0.0001 0.062 
(0.016)

0.0001 -1.906 
(0.665)

0.0049 0.022
(0.008)

0.010 128 0.606

Listwise 
deletion

-0.022
(0.010)

0.0394 -0.013
(0.037)

0.7168
-0.580
(1.078)

0.5936
0.007

(0.013)
0.6195 49 0.631

Multiple 
Imputation

-0.022
(0.011)

0.0824
-0.008
(0.036)

0.8419
-0.790
(1.088)

0.4869
0.009
0.013)

0.5001 640 0.540

Maximum 
Likelihood

-0.024
(0.0007)

<0.0001 -0.022
(0.001)

<0.0001 -1.042
(0.065)

<0.0001 0.013
(0.0008)

<0.0001 128 0.562

Table III: Select Regression Parameters, standard errors and, P-values of parameters with different methods with 
non-ignorable missing data Age*Gender indicates the interaction term between Age and Gender
* ISS=Injury severity score
† Multiple imputation has N=640 because 5 data sets x 128 observations
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